2024Graph A1

2024-12-20 16:05 114

AI技术使得我们能够更好地处理复杂的图数据,推动了社交网络分析、推荐系统和生物信息学等领域的发展。尽管图计算技术和 AI技术结合已经取得了显著的进展,但依然面临着诸多的挑战。随着大规模技术的崛起,图技术与大模型的结合有望成为解决这些挑战的重要途径。大模型为图数据的处理和分析提供了新的方法和视角,推动了知识图谱、图神经网络等领域的创新,但同时也带来了新的问题和挑战。

图数据

图数据的收集、存储和使用面临显著挑战。首先,图数据在收集过程中容易受到噪音的影响。这些噪音会沿着边传播,导致更大的危害。动态图和异质图增加了时间维度和节点、边的种类,使得存储和计算要求更高。图数据不仅需要存储节点的特征和标签,还需要存储边及其标签,这使得图的存储更占空间。此外,图数据的标注成本高,标注数据相对较少,进一步增加了处理难度。单一节点特征的信息密度高,处理难度较大,而多模态数据的统一处理也面临巨大挑战。图数据的复杂网络结构和多样性导致任务需求不同,模型需要关注的信息粒度也不同。传统的数据增强方法不适用于图数据,需要针对图数据的特征、结构、标签进行分别增强。图数据的长尾效应导致度数较高的枢纽节点容易被蓄意破坏,造成较大危害。全图的存储和计算不可行,需要平衡采样大小与计算成本,针对不同特性及任务需求采取不同的采样方法才能高效计算。针对这些问题,研究者们提出了多种解决方案。例如,针对动态图的构建需要有效捕捉节点和边的时间变化的问题,研究者们提出了包括基于增量式构建的图流算法的多种动态图数据集构建方法。图数据增强面临的挑战促使研究人员开发专门针对图数据的增强技术,图结构学习就是其中一种重要的方法。为了避免在全图上进行计算,研究者们发明了多种采样技术,包括随机游走采样、邻域采样、聚合采样等等。

图神经网络

图神经网络为图分析提供了一个有效的解决方案,然而,它们在实际应用中仍面临一些关键的挑战。例如,大规模图计算在性能方面存在显著不足,采样方法尚未统一,处理大规模图数需要更高效的算法。图数据种类繁多,包括同质图、异质图模型存在本质区别,动态图和文本图带来了额外的信息处理需求,这使得模型之间的迁移和泛化能力面临严峻挑战。节点分类的不平衡问题难以解决,采用欠采样和过采样的方法获得的样本在连边上不够真实,严重影响了模型的性能。图神经网络的可解释性较差,继承了神经网络的非线性特性,加之其自身复杂的结构信息使得预测结果更加难以解释。此外,图神经网络中的节点信息会进行传递和迭代,导致梯度比其他神经网络更容易爆炸。这些挑战表明,图神经网络在处理复杂结构化数据时仍需进一步优化和提升。为了提高大规模图数据的训练和推理,通常需要分布式或/和 CPU-GPU异构架构下的训练推理方法。为了提升图神经网络的可信性,研究者们对图神经网络的鲁棒性、公平性以及分布外泛性等多个方面进行了深入的研究。

图基础模型

图基础模型的发展也面临诸多问题和挑战。首先,大规模图数据不易获取,图数据集的规模和多样性不足以支持大图模型的训练。其次,图任务类型多样化,节点级、边级和图级任务的差异性增加了模型设计的复杂性。安全与隐私问题也是一个重要挑战,图基础模型可能面临与大语言模型类似的安全问题,湖北软件开发如生成幻觉和隐私风险。提高模型的可信度和透明度,保护隐私是亟待解决的问题。目前,图基础模型峡乏统一的范式,尚未展现出涌现能力和强泛化能力。鉴于大语言模型在自然语言处理中的成功应用,探讨图基础模型如何获取大语言模型的涌现和强泛化能力成为一个重要的研究方向。

知识图谱

以大语言模型为代表的大模型展现了很好的自然语言理解泛化能力,并且被公认掌握了一定的世界知识,这些知识以参数化的形式存储于模型的参数中,并在推理过程中得到应用。大模型给知识图谱技术的发展带来了机遇,也带来了新的问和挑战。首先,从知识图谱构建的角度来看,大语言模型的语言理解能力是否能够降低知识图谱的构建成本,并提升其规模和质量,使得知识图谱的发展进入一个新的阶段,这是一个值得深入研究的问题。其次,大模型是一种参数化的知识表示和推理技术方案,而知识图谱是一种符号化的知识表示和推理技术方案。在大模型出现之后,如何从知识表示和推理的角度进行协作?哪些知识应该存储于大模型中,哪些知识应该存储于知识图谱中,这些都是需要解决的重要问题。大模型具有很强的任务泛化能力,可以完成许多任务,在大模型时代背景下,如何提升知识图谱技术的泛化性,以便更好地与大模型配合并保留其强大的任务泛化能力,也是一个关键挑战。总的来说,大型的出现为知识图谱的构建、推理和服务带来了新的视角,有望促使知识图谱技术在未来实现重大突破,与大模型结合,完成大模型时代之前难以实现的任务和目标。

图应用

首先,自然语言转图查询(Text2GQL)面临着诸多挑战。相比于相对成熟的 SQL语法标准,图查询语言标准(ISO/GQL)尚未全面普及,目前存在多种查询语法并存的状态(如 GQL、PGQ、Cypher、Gremlin、GSQL 等),导致图数据库的使用门槛较高。Text2GQL 研究方向发展较晚,面临几个主要困难:缺乏海最数据集,鲜有公开的Text2GQL 数据集;缺乏如 Spider 数据集那样的评测标准和对应的评测数据;由于数据集和评测标准的欠缺,各种大模型微调方法的效果难以在Tex2GOL, 领域得到验证。可喜的是,在科研工作者不断的探索之下,TexI2GOL 已取得到了不错的进展,在数据集方面提出了通过语法制导的生成语料方法,并构建了对应的评测数据,在大模型微调方面,也发展出了多种技术。

免责声明:我们尊重知识产权、数据隐私,只做内容的收集、整理及分享,报告内容来源于网络,报告版权归原撰写发布机构所有,通过公开合法渠道获得,如涉及侵权,请及时联系我们删除,如对报告内容存疑,请与撰写、发布机构联系

发布于:广东省

联系我们

软件开发资讯

软件开发公司

软件开发团队介绍

软件开发价格

湖北软件开发